Olympus PEN E-PL3 Image Quality


Color

Saturation & Hue Accuracy
Accurate saturation levels with very good hue accuracy.

ISO Sensitivity
In the diagram above, the squares show the original color, and the circles show the color that the camera captured. More saturated colors are located toward the periphery of the graph. Hue changes as you travel around the center. Thus, hue-accurate, highly saturated colors appear as lines radiating from the center. Click for a larger image.

Saturation. The Olympus PEN E-PL3 pushes reds a fair bit, but most other colors are pretty close to accurate. Default saturation is 106.2% (6.2 % oversaturated), which is lower than average. Put another way, the E-PL3 colors are more realistic than most cameras. Saturation remains stable across the ISO range, except at ISO 12,800 where it drops off noticeably. You can always adjust saturation or select a different picture mode, to adjust color to your tastes if you find default saturation a little too realistic. Most consumer digital cameras produce color that's more highly saturated (more intense) than what's found in the original subjects. This is simply because most people like their color a bit brighter than life.

Skin tones. Here, the Olympus PEN E-PL3 did well, producing fairly natural-looking Caucasian skin tones, just slightly on the pinkish side when color balance is optimized. Where oversaturation is most problematic is on Caucasian skin tones, as it's very easy for these "memory colors" to be seen as too bright, too pink, too yellow, etc.

Hue. The Olympus PEN E-PL3 did push cyan toward blue and oranges slightly toward yellow, but shifts were relatively minor to moderate. (The cyan to blue shift is very common among the digital cameras we test; we think it's a deliberate choice by camera engineers to produce better-looking sky colors.) Overall hue accuracy is quite good with a Delta-C color error after correction for saturation of only 3.9 at base ISO, which is much better than average. Hue is "what color" the color is.

Saturation Adjustment
The Olympus E-PL3 lets you adjust the image saturation, contrast, and sharpness in five steps each. As can be seen below, the saturation adjustment was quite effective, covers a useful range, and does a good job of not impacting contrast.

Saturation Adjustment Examples
-2 0 +2

The table above shows results with the default as well as the two extreme saturation settings. Click on any thumbnail above, then click again to see the full-sized image.

See full set of test images with explanations
See thumbnails of all test and gallery images

Sensor

Exposure and White Balance

Indoors, incandescent lighting
Color casts with Auto, Incandescent and 2,600K white balance settings, but good color with Manual. Average exposure compensation required.

Auto White Balance
+0.3 EV
Incandescent White Balance
+0.3 EV
Manual White Balance
+0.3 EV
2,600 Kelvin
+0.3 EV

Indoors, under normal incandescent lighting, color balance is a touch cool with a bluish cast using the Auto white balance setting. Results with the Incandescent setting are a little warm and yellow. The Manual setting is by far the most accurate, while the 2,600 Kelvin setting is quite cool with a blue-green tint. The Olympus E-PL3 required an average amount of positive exposure compensation here, at +0.3 EV. (Our test lighting for this shot is a mixture of 60 and 100 watt household incandescent bulbs, a pretty yellow light source, but a very common one in typical home settings here in the U.S.)

Outdoors, daylight
Natural looking colors overall, though outdoor images were slightly underexposed at default exposure.

Manual White Balance,
+1.0 EV
Auto White Balance,
Auto Exposure

Outdoors, the Olympus E-PL3 performed reasonably well, with very good color, though exposure is a little dim at default settings. The Olympus E-PL3 required an above average amount of positive exposure compensation (+1.0 EV) to keep facial tones reasonably bright on the "Sunlit" Portrait shot. Default contrast is a bit high, though there are only a few blown highlights in the mannequin's shirt and flower, which is quite good. The Far-field shot is slightly underexposed at default settings, but has virtually no blown highlights, though there are some deep shadows that are a bit noisy.

See full set of test images with explanations
See thumbnails of all test and gallery images

Resolution
High resolution, ~1,700 lines of strong detail in JPEGs, up to about 1,900 lines from processed raw files.

Strong detail to
~1,700 lines horizontal
Camera JPEG
Strong detail to
~1,700 lines vertical
Camera JPEG
Strong detail to
~1,900 lines horizontal
ACR processed ORF
Strong detail to
~1,900 lines vertical
ACR processed ORF

In-camera JPEGs our laboratory resolution chart reveals sharp, distinct line patterns down to about 1,700 lines per picture height in both the horizontal and vertical direction before aliasing artifacts start to interfere with the pattern. Complete extinction of the pattern doesn't occur until about 2,700 to 2,800 lines, though. Adobe Camera Raw was able to extract more resolution, to about 1,900 lines in both directions, though color moire is more apparent. Use these numbers to compare with other cameras of similar resolution, or use them to see just what higher resolution can mean in terms of potential detail.

See full set of test images with explanations
See thumbnails of all test and gallery images

Sharpness & Detail
Good sharpness overall, though edge-enhancement artifacts on high-contrast subjects are visible. Mild noise suppression visible in the shadows.

Good definition of high-contrast
elements with some visible
sharpening artifacts.
Subtle detail: Hair
Noise suppression tends to blur
detail in areas of subtle contrast.

Sharpness. The Olympus PEN E-PL3 captures sharp images overall, though edge enhancement artifacts are visible on high-contrast subjects such as sharpening halos around the thicker branches and pine cones in the crop above left. Still, results are pretty good as we've seen much higher default sharpening from other cameras. Edge enhancement creates the illusion of sharpness by enhancing colors and tones right at the edge of a rapid transition in color or tone.

Detail. The crop above right shows some fairly mild noise suppression artifacts in the darkest areas of the model's hair, smudging individual strands together, though quite a few strands remain visible. Overall detail is quite good for a 12-megapixel Micro Four Thirds model. Noise-suppression systems in digital cameras tend to flatten-out detail in areas of subtle contrast. The effects can often be seen in shots of human hair, where the individual strands are lost and an almost "watercolor" look appears.

Raw vs In-Camera JPEGs
As noted above, the Olympus E-PL3 produces sharp, detailed in-camera JPEGs, though with some visible sharpening artifacts at default settings. As is almost always the case, though, more detail can be obtained from carefully processing raw files than can be seen in the in-camera JPEGs. Take a look below, to see what we mean:

In the table above, mousing over a link at the bottom will load the corresponding crop in the area above, and clicking on the link will load the full resolution image. The super fine camera JPEG and Olympus [ib] conversion used default settings, while Adobe Camera Raw conversion was sharpened in Photoshop using unsharp mask of 300% with a radius of 0.3.

As you can see, the Olympus [ib] conversion resulted in an image very similar to the in-camera JPEG in terms of detail, color and contrast. The Adobe Camera Raw (version 6.6) conversion however contains fine detail superior to the camera's SuperFine JPEG or the Olympus software conversion at default settings, which is especially noticeable in the pine needles, though it does leave quite a bit more noise. Nevertheless, like previous Olympus PEN cameras, the E-PL3 rewards raw shooters with even better detail when using a good quality raw converter.

ISO & Noise Performance
Low noise and pretty good detail up to ISO 800, moderate to high noise at higher ISOs.

Default High ISO Noise Reduction
ISO 200 ISO 400 ISO 800
ISO 1,600 ISO 3,200 ISO 6,400
   
  ISO 12,800  

The Olympus PEN E-PL3's images are quite clean and detailed at ISO 200, the base ISO, though some minor chroma noise is already visible in the shadows. Detail is still very good at ISO 400, with just a bit more blurring and a hint more chroma noise creeping into the shadows. ISO 800 is noticeably softer with more smudging due to stronger noise reduction, but detail is still pretty good. At ISO 1,600, we see additional detail loss due to stronger smudging, as well as more obvious purple and yellow blotches in shadow areas. At ISO 3,200, noise grain is stronger, blurring fine detail even further despite the weaker luminance noise reduction. Chroma noise is better controlled at ISO 3,200 though. Noise and the effects of noise reduction are quite obvious ISO 6,400, obscuring almost all fine detail and making some shadows quite purplish while lighter tones have yellow blotching. By ISO 12,800, noise grain is the dominant feature with very little detail left, and a lot of chroma noise is present as well, with dark purple shadows and bright yellow splotches. Overall, noise performance is very similar to other recent 12-megapixel Olympus PEN models which is good, but not as good as most APS-C models. As always, see the Print Quality section below for maximum recommended print sizes at each ISO.

A note about focus for this shot: We shoot this image at f/4, using one of three very sharp reference lenses (70mm Sigma f/2.8 macro for most cameras, 60mm f/2.8 Nikkor macro for Nikon bodies without a drive motor, and Olympus Zuiko 50mm f/2.0 for Four Thirds and Micro Four Thirds bodies). To insure that the hair detail we use for making critical judgements about camera noise processing and detail rendering is in sharp focus at the relatively wide aperture we're shooting at, the focus target at the center of the scene is on a movable stand. This lets us compensate for front- or back-focus by different camera bodies, even those that lack micro-focus adjustments. This does mean, though, that the focus target itself may appear soft or slightly out of focus for bodies that front- or back-focused with the reference lens. If you click to view the full-size image for one of these shots and notice that the focus target is fuzzy, you don't need to email and tell us about it; we already know it. :-) The focus target position will simply have been adjusted to insure that the rest of the scene is focused properly.

Extremes: Sunlit, dynamic range and low light tests
High resolution with good overall detail, though somewhat limited dynamic range. Good low-light performance.

+0.3 EV +0.7 EV +1.0 EV

Sunlight. The Olympus PEN E-PL3 struggled a little with this difficult shot, requiring more than the average amount of exposure compensation to keep the mannequin's face reasonably bright. The E-PL3 required +1.0 EV exposure compensation, while most cameras we've tested required about +0.7 EV for this "Sunlit" Portrait shot. Dynamic range was limited, resulting in dark and somewhat noisy shadows, though few highlights where clipped in the white shirt and flowers even at +1.0 EV. Compared to compact system cameras using APS-C sensors, the E-PL3 performed below average, though performance here was about average compared to most Micro Four Thirds models.

Because digital cameras are more like slide film than negative film (in that they tend to have a more limited tonal range), we test them in the harshest situations to see how they handle scenes with bright highlights and dark shadows, as well as what kind of sensitivity they have in low light. The shot above is designed to mimic the very harsh, contrasty effect of direct noonday sunlight, a very tough challenge for most digital cameras. (You can read details of this test here. In actual shooting conditions, be sure to use fill flash in situations like the one shown here; it's better to shoot in open shade whenever possible.)

Dynamic Range Analysis
A key parameter in a digital camera is its Dynamic Range, the range of brightness that can be faithfully recorded. At the upper end of the tonal scale, dynamic range is dictated by the point at which the RGB data "saturates" at values of 255, 255, 255. At the lower end of the tonal scale, dynamic range is determined by the point at which there ceases to be any useful difference between adjacent tonal steps. Note the use of the qualifier "useful" in there: While it's tempting to evaluate dynamic range as the maximum number of tonal steps that can be discerned at all, that measure of dynamic range has very little relevance to real-world photography. What we care about as photographers is how much detail we can pull out of the shadows before image noise becomes too objectionable. This, of course, is a very subjective matter, and will vary with the application and even the subject matter in question. (Noise will be much more visible in subjects with large areas of flat tints and subtle shading than it would in subjects with strong, highly contrasting surface texture.)

What makes most sense then, is to specify useful dynamic range in terms of the point at which image noise reaches some agreed-upon threshold. To this end, Imatest computes a number of different dynamic range measurements, based on a variety of image noise thresholds. The noise thresholds are specified in terms of f-stops of equivalent luminance variation in the final image file, and dynamic range is computed for noise thresholds of 1.0 (low image quality), 0.5 (medium image quality), 0.25 (medium-high image quality) and 0.1 (high image quality). For most photographers and most applications, the noise thresholds of 0.5 and 0.25 f-stops are probably the most relevant to the production of acceptable-quality finished images, but many noise-sensitive shooters will insist on the 0.1 f-stop limit for their most critical work.

JPEG. The graph at right (click for a larger version) was generated using Imatest's dynamic range analysis for an in-camera Olympus E-PL3 JPEG file with a nominally-exposed density step target (Stouffer 4110). At the base ISO of 200 (the optimal ISO) and with default settings, the graph shows 10.4 f-stops of total dynamic range, with 7.2 f-stops at the "High" Quality level. These are average numerical results for a Micro Four Thirds sensor, though not as good as most APS-C models. Compared to the Sony NEX-C3 which uses an APS-C sensor, the E-PL3 scored quite a bit lower at the High Quality level (7.2 vs 7.84 f-stops), but scored similarly in total dynamic range (10.1 f-stops vs 10.4), though a lot of that has to do with differences in JPEG processing. Note though that this measurement has a margin of error of about 1/3 f-stop, so differences of less than 0.33 can be ignored.

Raw. The graph at right is from the same Stouffer 4110 stepchart image captured as a raw (.ORF) file, processed with Adobe Camera Raw using the Auto setting. (Slightly better results are likely possible with manually tweaking, but we weren't able to do much better.) As can be seen, the score at the highest quality level actually decreased slightly from 7.2 to 6.86 f-stops, but total dynamic range increased over a full f-stop, to 10.4 from 11.8. Again, these results are about average for a Micro Four Thirds sensor, but not as good as most APS-C sensors. (The Sony NEX-C3 for example managed 8.74 f-stops at the highest quality level, and higher-end NEX models do even better.) It's also worth noting here is that ACR's default noise reduction settings reduced overall noise somewhat (see the plot in the lower left-hand corner) relative to the levels in the in-camera JPEG, which would tend to boost the dynamic range numbers for the higher quality thresholds.

Contrast Adjustment
The camera's contrast adjustment was some help in handling the harsh lighting in our "Sunlit" Portrait and Far-field shots.

Minimum Contrast
Contrast set to lowest,
+0.7 EV
Contrast set to lowest,
Auto Exposure

At its lowest contrast setting, the Olympus E-PL3 did a better job of revealing shadow detail, while maintaining fairly natural-looking skin tones. There were just a few blown highlights to begin with in both these shots so the decreased contrast setting left most highlights alone, but it did bring out more shadow and darker midtone detail.

"Sunlit" Portrait Contrast Adjustment Examples
-2 0 +2

The shots above show the results of the minimum, default and maximum contrast settings. While you can see the extremes, it's pretty hard to evaluate small differences in contrast on small thumbnails like these, click on any thumbnail to go to the full-size image.  As you can see, the E-PL3's contrast setting is effective on both highlights and shadows, and didn't impact saturation much, which is a good thing.


Outdoor Portrait Gradation Comparison
Gradation


Normal
(Default)



Low Key


Auto


High Key

Gradation
Similar to dynamic range optimization systems from other manufacturers, the Olympus E-PL3's Gradation setting applies local contrast adjustments in an attempt to preserve shadow detail and prevent highlight clipping with the Auto setting. Above are examples of the Normal (default), Low Key, Auto, and High Key settings applied to our "Sunlit" Portrait shot with +0.7 EV exposure compensation. Mouse over the links to load the associated thumbnail and histogram, and click on the links to visit the full resolution image.

As you can see, the Low Key setting applies Gradation for making subjects darker (in the thumbnail and histogram above, you can see that the camera shifted levels to the left, darkening the image dramatically), while the High Key setting does the opposite for brighter subjects (shifting levels to the right so that lighter tones are blown, but darker ones are opened up). The Auto setting did a good job at toning down highlights and bringing up darker midtones without making the image too flat-looking or washed-out.


Face Detection
Off at 0 EV
Aperture priority, f/8
On at 0 EV
Aperture priority, f/8
Full Auto
f/2

Face Detection
Like most Point & Shoot cameras these days (and most DSLRs in Live View mode), the Olympus E-PL3 has the ability to detect faces, and adjust exposure and focus accordingly. The E-PL3 does it automatically in iAuto mode, when a Portrait scene mode is selected, or when Face Detection AF mode is selected. As you can see from the examples above, it works well, as the image with face detection enabled is much better exposed for the face without having to use exposure compensation. The Full Auto setting worked even better by choosing a larger aperture (f/2). An excellent performance under very difficult lighting such as this.

Because digital cameras are more like slide film than negative film (in that they tend to have a more limited tonal range), we test them in the harshest situations to see how they handle scenes with bright highlights and dark shadows, as well as what kind of sensitivity they have in low light. The shot above is designed to mimic the very harsh, contrasty effect of direct noonday sunlight, a very tough challenge for most digital cameras. (You can read details of this test here.)



  1 fc
11 lux
1/2 fc
5.5 lux
1/4 fc
2.7 lux
1/8 fc
1.3 lux
1/16 fc
0.67 lux
1/16fc
No NR
ISO
200

1 s
f2.8

2 s
f2.8

4 s
f2.8

8 s
f2.8

15 s
f2.8

15 s
f2.8
ISO
400

0.5 s
f2.8

1 s
f2.8

2 s
f2.8

4 s
f2.8

8 s
f2.8

8 s
f2.8
ISO
800

1/4 s
f2.8

0.5 s
f2.8

1 s
f2.8

2 s
f2.8

4 s
f2.8

4 s
f2.8
ISO
1600

1/8 s
f2.8

1/4 s
f2.8

0.5 s
f2.8

1 s
f2.8

2 s
f2.8

2 s
f2.8
ISO
3200

1/15 s
f2.8

1/8 s
f2.8

1/4 s
f2.8

0.5 s
f2.8

1 s
f2.8

1 s
f2.8
ISO
6400

1/30 s
f2.8

1/15 s
f2.8

1/8 s
f2.8

1/4 s
f2.8

0.5 s
f2.8

0.5 s
f2.8
ISO
12800

1/60 s
f2.8

1/30 s
f2.8

1/15 s
f2.8

1/8 s
f2.8

1/4 s
f2.8

1/4 s
f2.8

Low Light. The Olympus E-PL3 performed fairly well in low lighting, capturing bright exposures at our lowest light level at all ISOs. Noise was well controlled up to ISO 800, though chroma noise is noticeable in dark shadows already at base ISO. There are a few bright pixels visible here and there at low to moderate ISOs. (The E-PL3 does offer pixel mapping, so hot/dead pixels can be mapped out without a trip to a service center.) A lot of bright pixels (we wouldn't call them "hot") are however visible when long exposure noise reduction is turned off at lower ISOs, but they blend into the noise "grain" at ISOs above 800, where noise reduction is still active when turned "off". White balance was quite neutral using the Auto setting, just very slightly cool and magenta at most ISOs, slightly greenish at others. We didn't notice any issues with banding, though some minor heat blooming is visible, emanating from bottom right corner at higher ISOs.

The camera's autofocus system was able to focus on our subject down to just above the 1/8 foot-candle light level unassisted with the kit lens, which is pretty good for a camera using contrast-detect autofocus, and in total darkness with the aid of its focus assist lamp.

How bright is this? The one foot-candle light level that this test begins at roughly corresponds to the brightness of typical city street-lighting at night. Cameras performing well at that level should be able to snap good-looking photos of street-lit scenes.

NOTE: This low light test is conducted with a stationary subject, and the camera mounted on a sturdy tripod. Most digital cameras will fail miserably when faced with a moving subject in dim lighting. (For example, a child's ballet recital or a holiday pageant in a gymnasium.) Thanks to their phase-detect AF systems, digital SLRs tend to do much better than point & shoots, but you still shouldn't expect a quick autofocus lock with moving subjects. The E-PL3 uses contrast-detect autofocus, as is found in most point & shoot cameras, so its low-light focusing ability is less than that of most SLRs with phase-detect systems. That said, though, the larger, more sensitive pixels of the E-PL3's sensor do better under dim lighting than do the tiny pixels of most point & shoots, (A useful trick is to just prop the camera on a convenient surface, and use its self-timer to release the shutter. This avoids any jiggling from your finger pressing the shutter button, and can work quite well when you don't have a tripod handy.)

Output Quality

Print Quality

Good detail and color at 20 x 30 inches from ISO 200; ISO 1,600 images look good at 11 x 14; and even ISO 12,800 shots make a good 5 x 7.

ISO 200 images look good printed at 20 x 30 inches, with good color and detail.

ISO 400 images are a little soft at 20 x 30, so we prefer the 16 x 20-inch prints, which look tack sharp at this size.

ISO 800 images are usable at 16 x 20, but better at 13 x 19 inches. Reds look a little soft at this size.

ISO 1,600 images have usable high-contrast detail at 13 x 19 inches, but other elements look better printed at 11 x 14.

ISO 3,200 shots look better printed at 8 x 10, though some reds at this point lose detail.

ISO 6,400 shots are usable at 8 x 10, but look better at 5 x 7 inches.

ISO 12,800 shots are surprisingly good at 5 x 7, though with some stippled chroma noise and a few pumped colors (oranges and yellows in particular). Printing at 4 x 6 tightens that up a bit, but I think most folks would be happy with 5 x 7.

Overall, the Olympus E-PL3 prints quite well, with good color and detail over the entire range. Even ISO 12,800 images have noise well under control without a lot of smearing or smudging.

Testing hundreds of digital cameras, we've found that you can only tell just so much about a camera's image quality by viewing its images on-screen. Ultimately, there's no substitute for printing a lot of images and examining them closely. For this reason, we now routinely print sample images from the cameras we test on our Canon Pro9000 Mark II studio printer, and the Canon Pixma MP610 here in the office. (See the Canon Pixma Pro9000 Mark II review for details on that model.)

 

The images above were taken from our standardized test shots. For a collection of more pictorial photos, see our Olympus PEN E-PL3 Photo Gallery .

Not sure which camera to buy? Let your eyes be the ultimate judge! Visit our Comparometer(tm) to compare images from the Olympus PEN E-PL3 with those from other cameras you may be considering. The proof is in the pictures, so let your own eyes decide which you like best!

Buy the Olympus E-PL3

Your purchases support this site

Buy the Olympus E-PL3